Химическая энциклопедия
Главная - Химическая энциклопедия - буква Л - ЛАЗЕР |
ЛАЗЕР
(LASER, аббревиатура слов англ, фразы Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), устройство, преобразующее разл. виды энергии (электрич., световую, хим., тепловую и др.) в энергию когерентного электромагн. излучения. В основе работы Л. лежит процесс вынужденного испускания электромагн. излучения (фотонов) атомами и др. квантовыми системами, находящимися в возбужденных состояниях
. Так, атом, находящийся в состоянии 2 с энергией W2, может перейти в состояние 1 с меньшей энергией Wl, испустив при этом фотон с частотой v21=(W2—W1)/h, где h-постоянная Планка (рис. 1). Излучат. переход может произойти как самопроизвольно (спонтанное испускание), так и под действием внеш. электромагн. излучения (вынужденное, или индуцированное, испускание). При спонтанном испускании частота v фотона может отличаться от v21 в нек-рых пределах Dvл, т.к. в реальной квантовой системе энергетич. уровни не строго дискретны, а занимают нек-рые
интервалы энергии DW2 и DW1. Контур спектральной линии спонтанного излучения описывается плавной кривой S(v, v21) (pис. 2); направление распространения излучения и фаза произвольны.
При вынужденном испускании фотоны неотличимы от внеш. фотонов, воздействующих на систему. В частности, если воздействующее излучение монохроматично (частота v) и имеет определенное направление распространения, индуцир. излучение имеет ту же частоту v и то же направление распространения. Вероятность вынужденного испускания зависит от частоты v воздействующего излучения: она пропорциональна фактору S(v, v21) и имеет значение тем большее, чем ближе v к резонансной частоте v21. Важным является то обстоятельство, что вероятность вынужденного испускания пропорциональна интенсивности воздействующей волны (плотности фотонов).
При обратном переходе 1:2 происходит поглощение фотона атомом на той же частоте v12, вероятность к-рого также пропорциональна плотности фотонов воздействующей волны и фактору S(v, v12). Поэтому преобладание вынужденного испускания над поглощением возможно лишь при выполнении условия: N2/g2>N1/g1, где N2 и N1 - населенности состояний 2 и 1 соотв. (числа атомов в
единице объема в-ва, находящихся на энергетич. уровнях 2 и 1), g2 и g1 - статистич. веса этих состояний. При термодинамич. равновесии всегда N2/g2<Nl/gl, поэтому условие N2/g2-N1/gl>0, наз. инверсией населенности, м. б. обеспечено лишь в термодинамически неравновесной системе. Этого достигают накачкой - подводом к системе энергии и созданием термодинамически неравновесного распределения частиц по энергетич. уровням системы. В-во, в к-ром создана инверсия населенности, наз. активной средой (активным в-вом).
В Л. отдельные акты вынужденного испускания превращ. в генерацию когерентного электромагн. излучения благодаря положит. обратной связи, при к-рой один испущенный фотон многократно вызывает новые акты вынужденного испускания точно таких же фотонов. Первоисточником волны являются спонтанно испущенные фотоны, из к-рых наиб. число имеют резонансную частоту v21; под их воздействием начинается индуцир. испускание на той же частоте. Постепенно фотоны с частотой v2l станут доминировать над всеми остальными, т. е. система начнет излучать монохроматич. электромагн. волну.
Описанная обратная связь в Л. осуществляется с помощью резонатора. Простейший резонатор для излучения в оптич. диапазоне представляет собой два зеркала, между к-рыми помещается активная среда. Одно из зеркал делается частично прозрачным для выхода части излучения, используемого потребителем. Остальное излучение отражается от зеркала и вновь возвращается в активную среду, вызывая новые индуцир. переходы. В результате происходит увеличение интенсивности волны - усиление. Для того чтобы усиление в активной среде скомпенсировало отвод из резонатора части излученной энергии, значение инверсной разности населенностей DN=N2/g2-N1/gl должно превышать определенное пороговое значение DNП, к-рое зависит от длины L активной среды между зеркалами, коэф. отражения r частично прозрачного зеркала и сечения а резонансного квантового перехода согласно соотношению:
отделены друг от друга частотным интервалом Dv=c/2L, где с - скорость света в активной среде. Поэтому Л. генерирует не одну частоту v0~v21, а набор частот vj=v0+jc/2L (j - целое число), к-рые определяют спектр лазерного излучения. С отстройкой частоты излучения от резонансного значения уменьшается вероятность индуцир. перехода и возрастает пороговая инверсная населенность.
Т. обр., Л., работающий как генератор когерентного излучения, должен состоять из трех компонентов (рис. 4): системы накачки - устройства, поставляющего энергию в Л. для переработки ее в когерентную волну; активной среды, к-рая вбирает в себя энергию накачки и переизлучает ее в
виде когерентного излучения, и резонатора, осуществляющего обратную связь. Л. может работать и как усилитель когерентного излучения. В этом случае обратная связь не обязательна, волна просто распространяется по активной среде, увеличивая свою мощность (энергию).
Размножение фотонов в резонаторе Л. и выход части из них через полупрозрачное зеркало можно рассматривать как разветвленную цепную р-цию рождения фотонов при индуцир. переходах и их адсорбцию на пов-сти зеркала Z с коэффициентом (1—r) при каждом столкновении:
происходит сравнительно медленно (время жизни возбужденного состояния t21~10-3 с). Инверсия населенности возникнет, если в состоянии 2 окажется более половины всех ионов Сr3+ . При концентрации N2 ионов Сr3+ в кристалле порядка 1019 см-3 это достигается, если энергия, поглощаемая за 1 с в 1 см3 рубина (уд. мощность накачки), составляет Руд=hv3lN2t-121]103 Вт/см3. Сечение s перехода 2:1 в рубине таково, что для генерации когерентного излучения на длине волны 0,69 мкм достаточно выполнения условия: (N2/g2-N1/g1)~1017 см-3 при длине кристалла ~10 см и коэффициенте r ~90%. На практике применяют кристаллы рубина, представляющие собой цилиндрич. стержни длиной 10-30 см и диаметром ~ 1 см. Аналогична схема накачки для Л. на основе стекол и иттрий-алюминиевого граната, активированных Nd, и нек-рых др. твердотельных Л., в к-рых для создания инверсной населенности используют энергетич. уровни примесных ионов. Оптич. накачку применяют также в Л. на красителях (жидкие активные среды) и ряде др.
Др. схема оптич. накачки основана на том, что при поглощении широкополосного спектра излучения происходит фотолиз молекул с появлением радикалов и возбужденных атомов, последние и образуют активную среду Л. Напр., при фотолизе молекулы C3F7I под действием УФ излучения с длиной волны 200-250 нм возникает возбужденный атом I в состоянии 3Р1/2
Электронный удар применяют также для накачки СО2-и СО-лазеров, Л. на парах металлов, эксимерных (точнее, эксиплексных), а также нек-рых полупроводниковых Л.
Тепловая накачка Л. происходит при быстром охлаждении сильно нагретых газовых смесей. При надлежащем подборе компонентов смеси удается найти такие системы энергетич. уровней частиц, в к-рых нижележащие уровни "охлаждаются" (опустошаются) быстрее, чем вышележащие. Это приводит к образованию инверсной населенности. Практически наиб. удобный способ охлаждения - сверхзвуковое истечение газов через сопло; наиб. удачные активные среды-смеси N2-CO2-He и N2-CO2-H2O. Л. с тепловой накачкой на этих активных средах наз. тепловыми газодинамич. Л.
О химической накачке см. Лазеры химические
.
Инжекция носителей тока через p-n-переход - осн. способ накачки полупроводниковых Л. Активная среда представляет собой кристалл-полупроводник, состоящий из областей р- и n-типа (рис. 7). Между этими областями возникает контактная разность потенциалов, уравновешивающая потоки носителей из одной части в другую;
электрич. ток через контакт равен нулю. Если к образцу приложить электрич. напряжение, равное по величине контактной разности потенциалов, возникнут потоки носителей навстречу друг другу и их рекомбинация с испусканием фотонов. Зеркалами оптич. резонатора в таком Л. служат хорошо отполированные плоскопараллельные грани самого кристалла. наиб. совершенные инжекционные Л. представляют собой более сложную структуру (гетероструктуру). Важная особенность инжекционных Л. -их миниатюрность; длина активной зоны обычно неск. мм, рабочая часть p-n-перехода имеет размеры в направлении протекания тока ~1 мкм, поперечный размер - обычно 1 мм.
Типы Л. и их применение. Л. можно классифицировать по типу активной среды (твердотельные, в т.ч. полупроводниковые Л., газовые, Л. на жидких красителях и т.п.), по способу накачки или по др. признакам, однако ни одна из таких классификаций не является однозначной. По совокупности нек-рых признаков (тип среды, способ накачки, режим работы, мощность генерируемого излучения и др.) удобно выделить след. Л.:
|
ВОДОПОТРЕБЛЕНИЯ НОРМА / Большой энциклопедический словарь. Сельское хозяйство
Прованс / Энциклопедический словарь
Флудить / Словарь компьютерного жаргона
Русский Алфавит / Энциклопедический словарь
Политическая Карта Мира / Энциклопедический словарь
СЕКВЕСТИРОВАНИЕ / Бухгалтерский словарь
Аспект / Словарь Даля
Группы Крови / Энциклопедический словарь
АВИЗО / Бухгалтерский словарь
Рентабельность / Бизнес словарь
Алфавит / Энциклопедический словарь
Гетеро... / Сексологический словарь
Копрофилия / Толковый словарь психиатрических терминов
Фонетический / Словарь Даля
Географические Карты / Энциклопедический словарь
Диверсификация / Бизнес словарь
Личности структура по Платонову / Толковый словарь психиатрических терминов
Реализм / Энциклопедический словарь
Римские Цифры / Энциклопедический словарь
Интерпретация / Словарь логики
Логика / Словарь логики
Синонимы / Энциклопедический словарь
СЧЕТ-ФАКТУРА / Бухгалтерский словарь
Части Речи / Энциклопедический словарь
Филолог / Энциклопедический словарь